References

Bisulfite Sequencing Methods

Adapter trimming: Why are adapter sequences trimmed from only the 3' ends of reads? (2018). Retrieved January 24, 2019, from https://support.illumina.com/bulletins/2016/04/adapter-trimming-why-are-adapter-sequences-trimmed-from-only-the--ends-of-reads.html

Aird, D., Ross, M. G., Chen, W. S., Danielsson, M., Fennell, T., Russ, C., … Gnirke, A. (2011). Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biology, 12(2), R18. https://doi.org/10.1186/gb-2011-12-2-r18

Benjamini, Y., & Speed, T. P. (2012). Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Research, 40(10), 1–14. https://doi.org/10.1093/nar/gks001

Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., … Smith, A. J. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53–49. https://doi.org/10.1038/nature07517

Bormann Chung, C. A., Boyd, V. L., McKernan, K. J., Fu, Y., Monighetti, C., Peckham, H. E., & Barker, M. (2010). Whole methylome analysis by ultra-deep sequencing using two-base encoding. PLoS ONE, 5(2). https://doi.org/10.1371/journal.pone.0009320

Chen, P.-Y., Cokus, S. J., & Pellegrini, M. (2010). BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics, 11(203), 2–7. https://doi.org/10.1186/1471-2105-11-203

Cherf, G. M., Lieberman, K. R., Rashid, H., Lam, C. E., Karplus, K., & Akeson, M. (2012). Automated Forward and Reverse Ratcheting of DNA in a Nanopore at Five Angstrom Precision. Nature Biotechnology, 30(4), 344–348. https://doi.org/10.1038/nbt.2147.Automated

Cokus, S. J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D., … Jacobsen, S. E. (2008). Shotgun bisulfite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452(7184), 215–219. https://doi.org/10.3390/ijms151222874

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., … Dewinter, A. (2009). Real-Time DNA sequencing from Single Polymerase Molecules. Science, 323(January), 133–138. https://doi.org/10.1126/science.1162986

Erdmann, R. M., Souza, A. L., Clish, C. B., & Gehring, M. (2015). 5-Hydroxymethylcytosine Is Not Present in Appreciable Quantities in Arabidopsis DNA. G3: Genes, Genomes, Genetics, 5(1), 1–8. https://doi.org/10.1534/g3.114.014670

Feng, S., Cokus, S. J., Schubert, V., Zhai, J., Pellegrini, M., & Jacobsen, S. E. (2014). Genome-wide Hi-C Analyses in Wild-Type and Mutants Reveal High-Resolution Chromatin Interactions in Arabidopsis. Molecular Cell, 55(5), 694–707. https://doi.org/10.1016/j.molcel.2014.07.008

Flusberg, B. A., Webster, D. R., Lee, J. H., Travers, K. J., Olivares, E. C., Clark, T. A., ... & Turner, S. W. (2010). Direct detection of DNA methylation during single-molecule, real-time sequencing. Nature methods, 7(6), 461-465.

Fojtová, M., Kovařík, A., & Matyášek, R. (2001). Cytosine methylation of plastid genome in higher plants. Fact or artefact? Plant Science, 160(4), 585–593. https://doi.org/10.1016/S0168-9452(00)00411-8

Frommer, M., McDonald, L. E., Millar, D. S., Collist, C. M., Watt, F., Griggt, G. W., … Paul, C. L. (1992). A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proceedings of the National Academy of Sciences, 89(March), 1827–1831. https://doi.org/10.1073/pnas.89.5.1827

Greagg, M., Fogg, M. J., Panayotou, G., Evans, S. J., Connolly, B. A., & Pearl, L. H. (1999). A read-ahead function in archaeal DNA polymerases detects promutagenic template-strand uracil. Proceedings of the National Academy of Sciences, 96(16), 9045–9050. https://doi.org/10.1073/pnas.96.16.9045

Grehl, C., Kuhlmann, M., Becker, C., Glaser, B., & Grosse, I. (2018). How to Design a Whole-Genome Bisulfite Sequencing Experiment. Epigenomes, 2(21), 1–11. https://doi.org/10.3390/epigenomes2040021

Grob, S., Schmid, M. W., & Grossniklaus, U. (2014). Hi-C Analysis in Arabidopsis Identifies the KNOT, a Structure with Similarities to the flamenco Locus of Drosophila. Molecular Cell, 55(5), 678–693. https://doi.org/10.1016/j.molcel.2014.07.009

Guo, W., Fiziev, P., Yan, W., Cokus, S. J., Sun, X., Zhang, M. Q., … Pellegrini, M. (2013). BS-Seeker2: A versatile aligning pipeline for bisulfite sequencing data. BMC Genomics, 14(1). https://doi.org/10.1186/1471-2164-14-774

Hansen, K. D., Brenner, S. E., & Dudoit, S. (2010). Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Research, 38(12), 1–7. https://doi.org/10.1093/nar/gkq224

Hansen, K. D., Langmead, B., & Irizarry, R. A. (2012). BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biology, 13(10), 1–10. https://doi.org/10.1186/gb-2012-13-10-r83

Hattman, S., Schlagman, S., & Cousens, L. (1973). Isolation of a mutant of Escherichia coli defective in cytosine specific deoxyribonucleic acid methylase activity and in partial protection of bacteriophage ?? against restriction by cells containing the N 3 drug resistance factor. Journal of Bacteriology, 115(3), 1103–1107. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC246359/pdf/jbacter00349-0397.pdf

Hayatsu, H., & Shiragami, M. (1979). Reaction of Bisulfite with the 5-Hydroxymethyl Group in Pyrimidines and in Phage DNAs. Biochemistry, 18(4), 632–637. https://doi.org/10.1021/bi00571a013

Hayatsu, H., Wataya, Y., Kai, K., & Iida, S. (1970). Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry, 9(14), 2858–2865. https://doi.org/10.1021/ja00706a062

Hodges, E., Smith, A., Kendall, J., Xuan, Z., Ravi, K., Rooks, M., … Hicks, J. (2009). High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Research, 19(9), 1593. Retrieved from https://genome.cshlp.org/content/early/2009/07/06/gr.095190.109.full.pdf

Huber, S. M., Van Delft, P., Mendil, L., Bachman, M., Smollett, K., Werner, F., … Balasubramanian, S. (2015). Formation and abundance of 5-hydroxymethylcytosine in RNA. ChemBioChem, 16(5), 752–755. https://doi.org/10.1002/cbic.201500013

Illumina Adapter Sequences. (2018). San Diego, California. Retrieved from https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/experiment-design/illumina-adapter-sequences-1000000002694-09.pdf

Kint, S., De Spiegelaere, W., De Kesel, J., Vandekerckhove, L., & Van Criekinge, W. (2018). Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS ONE, 13(6), e0199091. https://doi.org/10.1371/journal.pone.0199091

Kozarewa, I., Ning, Z., Quail, M. a, Sanders, M. J., & Turner, D. J. (2009). Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of GC-biased genomes. Nature Methods, 6(4), 291–295. https://doi.org/10.1038/nmeth.1311.Amplification-free

Krueger, F., & Andrews, S. R. (2011). Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27(11), 1571–1572. https://doi.org/10.1093/bioinformatics/btr167

La, H., Ding, B., Mishra, G. P., Zhou, B., Yang, H., Bellizzi, M. del R., … Wang, G.-L. (2011). A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice. Proceedings of the National Academy of Sciences, 108(37), 15498–15503. https://doi.org/10.1073/pnas.1112704108

Laehnemann, D., Borkhardt, A., & McHardy, A. C. (2016). Denoising DNA deep sequencing data-high-throughput sequencing errors and their correction. Briefings in Bioinformatics, 17(1), 154–179. https://doi.org/10.1093/bib/bbv029

Lang, Z., Wang, Y., Tang, K., Tang, D., Datsenka, T., Cheng, J., … Zhu, J.-K. (2017). Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proceedings of the National Academy of Sciences, 114(22), E4511–E4519. https://doi.org/10.1073/pnas.1705233114

Langmead, B., & Salzberg, S. L. (2013). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923.Fast

Lei, M., Zhang, H., Julian, R., Tang, K., Xie, S., & Zhu, J.-K. (2015). Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proceedings of the National Academy of Sciences, 112(11), 3553–3557. https://doi.org/10.1073/pnas.1502279112

Leutwiler, L. S., Hough-Evans, B. R., & Meyerowitz, E. M. (1984). The DNA of Arabidopsis thaliana. MGG Molecular & General Genetics, 194(1–2), 15–23. https://doi.org/10.1007/BF00383491

Li, F. W., & Harkess, A. (2018). A guide to sequence your favorite plant genomes. Applications in Plant Sciences. https://doi.org/10.1002/aps3.1030

Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26(5), 589–595. https://doi.org/10.1093/bioinformatics/btp698

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352

Lin, X., Sun, D., Rodriguez, B., Zhao, Q., Sun, H., Zhang, Y., & Li, W. (2013). BSeQC: Quality control of bisulfite sequencing experiments. Bioinformatics, 29(24), 3227–3229. https://doi.org/10.1093/bioinformatics/btt548

Lindahl, T., & Wood, R. D. (1999). Quality control by DNA repair. Science, 286(5446), 1897–1905. https://doi.org/10.1126/science.286.5446.1897

Lister, R., O'Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry, C. C., Millar, A. H., & Ecker, J. R. (2008). Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis. Cell, 133(3), 523–536. https://doi.org/10.1016/j.cell.2008.03.029

Liu, Y., Siegmund, K. D., Laird, P. W., & Berman, B. P. (2012). Bis-SNP: Combined DNA methylation and SNP calling for Bisulfite-seq data. Genome Biology, 13(7). https://doi.org/10.1186/gb-2012-13-7-r61

Liu, Y., Siejka-Zielińska, P., Velikova, G., Bi, Y., Yuan, F., Tomkova, M., ... & Song, C. X. (2019). Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nature biotechnology, 37(4), 424-429.

Magoč, T., & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21), 2957–2963. https://doi.org/10.1093/bioinformatics/btr507

Mahmood, A. M., & Dunwell, J. M. (2019). Evidence for novel epigenetic marks within plants. AIMS genetics, 6(4), 70.

Marano, M. R., & Carrillo, N. (1991). Chromoplast formation during tomato fruit ripening. No evidence for plastid DNA methylation. Plant Molecular Biology, 16(1), 11–19. https://doi.org/10.1007/BF00017913

Mardis, E., McPherson, J., Martienssen, R., Wilson, R. K., & McCombie, W. R. (2002). What is Finished, and Why Does it Matter. Genome Research, 12, 669–671. https://doi.org/10.1101/gr.032102.O

McKernan, K. J., Blanchard, A., Kotler, L., & Costa, G. (2006). 2008/0003571. United States.

Meissner, Alexander, Andreas Gnirke, George W. Bell, Bernard Ramsahoye, Eric S. Lander, and Rudolf Jaenisch. "Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis." Nucleic acids research 33, no. 18 (2005): 5868-5877.

Mikheyev, A. S., & Tin, M. M. Y. (2014). A first look at the Oxford Nanopore MinION sequencer. Molecular Ecology Resources, 14(6), 1097–1102. https://doi.org/10.1111/1755-0998.12324

Mirouze, M., Reinders, J., Bucher, E., Nishimura, T., Schneeberger, K., Ossowski, S., … Mathieu, O. (2009). Selective epigenetic control of retrotransposition in Arabidopsis. Nature, 461(7262), 427–430. https://doi.org/10.1038/nature08328

Miura, F., Enomoto, Y., Dairiki, R., & Ito, T. (2012). Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Research, 40(17). https://doi.org/10.1093/nar/gks454

Nunn, A., Otto, C., Stadler P. F., Langenberger D. (2021). Comprehensive benchmarking of software for mapping whole genome bisulfite data: from read alignment to DNA methylation analysis, Briefings in Bioinformatics, bbab021, https://doi.org/10.1093/bib/bbab021

Onishi-Seebacher, M., & Korbel, J. O. (2011). Challenges in studying genomic structural variant formation mechanisms: The short-read dilemma and beyond. BioEssays, 33(11), 840–850. https://doi.org/10.1002/bies.201100075

Otto, C., Stadler, P. F., & Hoffmann, S. (2012). Fast and sensitive mapping of bisulfite-treated sequencing data. Bioinformatics, 28(13), 1698–1704. https://doi.org/10.1093/bioinformatics/bts254

Pabinger, S., Ernst, K., Pulverer, W., Kallmeyer, R., Valdes, A. M., Metrustry, S., … Weinhaeusel, A. (2016). Analysis and visualization tool for targeted amplicon bisulfite sequencing on ion torrent sequencers. PLoS ONE, 11(7), 1–16. https://doi.org/10.1371/journal.pone.0160227

Pedersen, B., Eyring, K., De, S., Yang, I. V, & Schwartz, D. A. (2014). Fast and accurate alignment of long bisulfite-seq reads (arXiv q-bio). Denver, Colorado. Retrieved from https://arxiv.org/pdf/1401.1129.pdf

Picard Toolkit. (2019). Broad Institute. Retrieved from https://github.com/broadinstitute/picard

Poptsova, M. S., Il’Icheva, I. A., Nechipurenko, D. Y., Panchenko, L. A., Khodikov, M. V, Oparina, N. Y., … Grokhovsky, S. L. (2014). Non-random DNA fragmentation in next-generation sequencing. Scientific Reports, 4, 1–6. https://doi.org/10.1038/srep04532

Prezza, N., Del Fabbro, C., Vezzi, F., De Paoli, E., & Policriti, A. (2012). ERNE-BS5: Aligning BS-treated sequences by multiple hits on a 5-letters alphabet. 2012 ACM Conference on Bioinformatics, Computational Biology and Biomedicine, BCB 2012, (May), 12–19. https://doi.org/10.1145/2382936.2382938

Raine, A., Liljedahl, U., & Nordlund, J. (2018). Data quality of whole genome bisulfite sequencing on Illumina platforms. PLoS ONE, 13(4), 1–15. https://doi.org/10.1371/journal.pone.0195972

Ratel, D., Ravanat, J. L., Berger, F., & Wion, D. (2006, March). N6-methyladenine: The other methylated base of DNA. BioEssays. https://doi.org/10.1002/bies.20342

Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., … Bustillo, J. (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475, 348–352. https://doi.org/10.1038/nature10242

Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., … Smith, M. (1977). Nucleotide sequence of bacteriophage φX174 DNA. Nature, 265, 687–695. https://doi.org/10.1038/267585a0

Saxena, R. K., Edwards, D., & Varshney, R. K. (2014). Structural variations in plant genomes. Briefings in Functional Genomics, 13(4). https://doi.org/10.1093/bfgp/elu016

Shapiro, R., Servis, R. E., & Welcher, M. (1970). Reactions of Uracil and Cytosine Derivatives with Sodium Bisulfite. A Specific Deamination Method. Journal of the American Chemical Society, 92(2), 422–424. https://doi.org/10.1021/ja00705a626

Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P., Rosenbaum, A. M., … Church, G. M. (2005). Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 309, 1728–1732. https://doi.org/10.1126/science.1117389

Šimková, H. (1998). Methylation of mitochondrial DNA in carrot (Daucus carota L.). Plant Cell Reports, 17(3), 220–224. https://doi.org/10.1007/s002990050382

Treangen, T. J., & Salzberg, S. L. (2011). Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nature Reviews Genetics, 13(1), 36–46. https://doi.org/10.1038/nrg3117.Repetitive

Tsukahara, S., Kobayashi, A., Kawabe, A., Mathieu, O., Miura, A., & Kakutani, T. (2009). Bursts of retrotransposition reproduced in Arabidopsis. Nature, 461(17), 423–427. https://doi.org/10.1038/nature08351

Uemura, S., Aitken, C. E., Korlach, J., Flusberg, B. A., Turner, S. W., & Puglisi, J. D. (2010). Real-time tRNA transit on single translating ribosomes at codon resolution. Nature, 464(7291), 1012–1017. https://doi.org/10.1038/nature08925

Vanyushin, B. F., & Kirnos, M. D. (1988). DNA methylation in plants. Gene, 74(1), 117–121. Retrieved from http://zero.sci-hub.se/2223/39b0cdc1e6d65e6ac3b157a88ec31cc7/vanyushin1988.pdf

Venney, C. J., Johansson, M. L., & Heath, D. D. (2016). Inbreeding effects on gene-specific DNA methylation among tissues of Chinook salmon. Molecular Ecology, 25(18), 4521–4533. https://doi.org/10.1111/mec.13777

Wagner, I., & Capesius, I. (1981). Determination of 5-methylcytosine from plant DNA by high-performance liquid chromatography. Biochimica et Biophysica Acta, 654, 52–56. https://doi.org/10.1360/zd-2013-43-6-1064

What is nucleotide diversity and why is it important? (2017). Retrieved January 24, 2018, from https://support.illumina.com/bulletins/2016/07/what-is-nucleotide-diversity-and-why-is-it-important.html

Wreczycka, K., Gosdschan, A., Yusuf, D., Grüning, B., Assenov, Y., & Akalin, A. (2017). Strategies for analyzing bisulfite sequencing data. Journal of biotechnology, 261, 105-115.

Xi, Y., & Li, W. (2009). BSMAP: Whole genome bisulfite sequence MAPping program. BMC Bioinformatics, 10. https://doi.org/10.1186/1471-2105-10-232

Zhang, H., Lang, Z., & Zhu, J.-K. (2018). Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology, 19(8), 489–506. https://doi.org/10.1038/s41580-018-0016-z

Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S. J., Chan, S. W. L., Chen, H., … Ecker, J. R. (2006). Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis. Cell, 126(6), 1189–1201. https://doi.org/10.1016/j.cell.2006.08.003

Ziller, M. J., Hansen, K. D., Meissner, A., & Aryee, M. J. (2015). Coverage recommendations for methylation analysis by whole genome bisulfite sequencing. Nature Methods, 12(3), 230–232. https://doi.org/10.1097/NCN.0b013e3181a91b58.Exploring

Last updated