EpiDiverse
TextbookEpidiverse ToolkitLectures
  • Introduction to Ecological Plant Epigenetics
  • Ecology
    • Phenotypic plasticity
      • Introduction: What is phenotypic plasticity?
      • Phenotypic plasticity at the molecular scale
      • Transgenerational plasticity and adaptation
      • Mechanisms of transgenerational responses
      • Ecological and evolutionary implications of phenotypic plasticity
      • References
    • Plant Defense Response
      • Priming
      • Abiotic factors
      • Biotic interactions
      • Transgenerational transmission of induced defenses
      • Future directions
      • Designing more ambitious studies
      • Conclusion
      • References
    • Epigenetics in Evolution
      • Current evolutionary theory
      • Extended Synthesis and future perspectives
      • Epigenetics role in evolution
      • Stability of epigentic marks
      • Phenotypic effects
      • Genetics - epigenetics
      • Natural patterns of DNA methylation
      • References
    • Genetic and epigenetic variation in natural populations across large spatial scales
      • Introduction: From genetic diversity to epigenetic diversity
      • Ecological levels of organization
      • Effects of Epigenetic Diversity
      • References
    • Conservation epigenetics
      • Conservation Epigenetics – will it come or will it go?
      • Increasing habitat and stress heterogeneity
      • Epimutation markers as a tool for conservation management
      • References
  • Molecular Biology
    • Chromatin organization and modifications regulating transcription
    • DNA Methylation
      • DNA methylation is the primary epigenetic mark
      • DNA methylation and demethylation
      • Distribution of methylcytosine in plant genomes
      • DNA methylation and imprinting
      • References
  • Bioinformatics
    • Bisulfite Sequencing Methods
      • Principles of Bisulfite Sequencing
      • Experimental Design
      • Library Preparation
      • Computational Processing
      • Alternative Methods
      • References
  • EpiDiverse Toolkit
    • Best Practice Pipelines
    • Installation
    • Troubleshooting
  • Lectures
    • Phenotypic plasticity - Vitek Latzel
    • Spatial patterns of epigenetic diversity - Katrin Heer
    • Natural variation of methylation - Detlef Weigel
  • Epigenetic talks
  • Appendix
    • Glossary
    • Acknowledgement
  • EpiDiverse
Powered by GitBook
On this page
Export as PDF
  1. Ecology
  2. Conservation epigenetics

References

Díaz, S. M., Settele, J., Brondízio, E., Ngo, H., Guèze, M., Agard, J., ... & Zayas, C. (2019). The global assessment report on biodiversity and ecosystem services: Summary for policy makers.

Frankham, R. (1995). Conservation genetics. Annual review of genetics, 29(1), 305-327.

Hampe, A., & Petit, R. J. (2005). Conserving biodiversity under climate change: the rear edge matters. Ecology letters, 8(5), 461-467.

Hazarika, R. R., Serra, M., Zhang, Z., Zhang, Y., Schmitz, R. J., & Johannes, F. (2022). Molecular properties of epimutation hotspots. Nature Plants, 1-11.

Herrera, C. M., Medrano, M., & Bazaga, P. (2017). Comparative epigenetic and genetic spatial structure of the perennial herb Helleborus foetidus: Isolation by environment, isolation by distance, and functional trait divergence. American Journal of Botany, 104(8), 1195-1204.

Holderegger, R., Balkenhol, N., Bolliger, J., Engler, J. O., Gugerli, F., Hochkirch, A., ... & Zachos, F. E. (2019). Conservation genetics: Linking science with practice.

Johannes, F., & Schmitz, R. J. (2019). Spontaneous epimutations in plants. New Phytologist, 221(3), 1253-1259.

Menges, E. S. (1991). The application of minimum viable population theory to plants. Genetics and conservation of rare plants, 45, 158-164.

Richards, C. L., Alonso, C., Becker, C., Bossdorf, O., Bucher, E., Colomé‐Tatché, M., ... & Verhoeven, K. J. (2017). Ecological plant epigenetics: Evidence from model and non‐model species, and the way forward. Ecology letters, 20(12), 1576-1590.

Soulé, M. E. (1985). What is conservation biology?. BioScience, 35(11), 727-734.

Yao, N., Schmitz, R. J., & Johannes, F. (2021). Epimutations define a fast-ticking molecular clock in plants. Trends in Genetics, 37(8), 699-710.

Xie, H., Konate, M., Sai, N., Tesfamicael, K. G., Cavagnaro, T., Gilliham, M., ... & Lopez, C. M. (2017). Global DNA methylation patterns can play a role in defining terroir in grapevine (Vitis vinifera cv. Shiraz). Frontiers in plant science, 8, 1860.

PreviousEpimutation markers as a tool for conservation managementNextChromatin organization and modifications regulating transcription

Last updated 3 years ago